
Example: Discriminatory lending
• Loan officer of a bank can offer low 

interest loan to a business client 

• Unobserved client type correlates with 
both the baseline revenue and the 
treatment choice (which is biased 
against small businesses)

• Bank wants to estimate the mean return
(treatment effect) of these loans
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Model: Bank Loan 
Repeated Interaction
• For each round 𝑡 ∈ 𝑇:
• New business comes in & assigned loan officer
• Bank recommends control (𝑧! = 0) or treatment (𝑧! = 1) to loan officer 

based on the history of returns on past loans
• Loan officer decides to offer loan (𝑥! = 1) or not (𝑥! = 0)
• Profit 𝑦! is observed by the bank
• Estimate treatment effect 1𝜃 based on observed data

Recommendations sway some salespeople to 
offer low-interest loan to small businesses.

Bank’s goal: Maximize net profit over all 𝑇
rounds, estimate treatment effect

Loan officer’s goal: Maximize their own 
expected profits
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Recommendations induce variability:
• Bank’s recommendations incentivize 

loan officer to offer loan to small 
businesses
• Gather new information about loan 

returns
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Recommendation as Instrument
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Instrument Variable Regression:
• Use 𝑛 samples to estimate 𝜃 with #𝜃):



| 1𝜃" − 𝜃| = 4𝑂
𝑘

𝑛#$%

Main Contributions

Fully incentive-compatible 
(benchmark)

Our Algorithm

Constant 𝑐 > 𝑇
Linear regret

Constant 𝑐 < 𝑇
Sublinear regret

Treatment effect estimation error 
bound after running our algorithm: 
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recommendations that incentivize 
exploration & act as instruments
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𝑅 𝑇 = 𝑐 + 4𝑂 𝑇
Regret bound for our algorithm:
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Incentivizing Bandit Exploration: Recommendations as Instruments          ||            Daniel Ngo, Logan Stapleton, Vasilis Syrgkanis, Zhiwei Steven Wu         ||          4/4


