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 Loan officer of a bank can offer low
interest loan to a business client

treatment business type

* Unobserved client type correlates with choice (small / big)
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Recommendations sway some salespeople to
offer low-interest loan to small businesses.

* New business comes in & assigned loan officer

e Foreachroundt € T:

* Bank recommends control (z; = 0) or treatment (z; = 1) to loan officer
based on the history of returns on past loans

* Loan officer decides to offer loan (x; = 1) or not (x; = 0)

* Profit y; is observed by the bank

e Estimate treatment effect @ based on observed data

Bank’s goal: Maximize net profit over all T Loan officer’s goal: Maximize their own
rounds, estimate treatment effect expected profits




Recommendation as Instrument

reward

Recommendations induce variability: a ° @

* Bank’s recommendations incentivize
loan officer to offer loan to small

i=1(x; — %)(z; — 2)

businesses
* Gather new information about loan Q
returns
type
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Treatment effect estimation error
bound after running our algorithm:

treatment effect

) . # of arms
estimation

Multi-armed bandits algorithm with < \/E/

recommendations that incentivize 8, — 0] =0
exploration & act as instruments Nmin

least # of times
any arm is
recommended

Regret bound for our algorithm: Fully incentive-compatible Our Algorithm
~ (benchmark)
R(T) = ¢ + 0(\/7\)

Constantc > T Constantc < T

prior-dependent time horizon Linear regret Sublinear regret
constant




